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Abstract 
 
 Air temperature has exhibited a clear positive trend over the past several 

decades throughout the arctic, including Alaska. Other variables, such as precipitation, 

have much more uncertain trends due to inhomogeneities in measurement and high 

internal variability. The use of linear regression to analyze precipitation in Alaska has 

resulted in often contradictory results. This paper proposes the use of Bayesian models 

such as the R package Rbeast to allow for the more nuanced analysis. The examples 

given in this paper show how Bayesian analysis can be used to detect subtle changes 

and better constrain the disagreement between data sources. Applied to gridded data, 

Bayesian analysis shows how precipitation has changed overtime across Alaska. 

Change has accelerated over the past decade, but only precipitation increase on the 

North Slope can be assigned high confidence. Overall, this analysis highlights how 

Bayesian techniques may be uniquely useful to climate research in regions with 

heterogeneous data sources and substantial internal variability. 

 
Introduction 

  

 Alaska, like much of the Arctic, is experiencing unprecedented environmental 

change (Walsh et al., 2011). While changes in some climate variables, like temperature, 

exhibit easily identifiable trends, changes in other variables are much more unclear 

(Bieniek et al., 2014). Precipitation is one such variable because of its many complex 

processes, large spatial variability, high inter-annual to decadal variability and even 

difficulties in basic measurement in some environments. Yet precipitation is a highly 

consequential variable driving winter snowpack, river discharge and associated floods, 

and glacier mass accumulation.  Precipitation is also a key determinant of soil wetness, 

drought, and wildfire potential. In these and other ways, precipitation impacts 

infrastructure, ecosystems, and humans.  

 

       While climate models largely agree that Alaska’s precipitation, particularly summer 

precipitation, is likely to increase by 2100, observed trends over the past century are 



3 
 

much less conclusive (Lader et al., 2017). Most past studies have shown mixed results 

and uncertain trends for both average and extreme observed precipitation around the 

state over the past century (McAfee, Guentchev and Eischeid, 2013; McAfee, 

Guentchev and Eischeid, 2014; Bennett and Walsh, 2014). These issues are enhanced 

by the spotty and inconsistent station data records in Alaska.  Heterogeneities in 

precipitation histories arise not only from the intermittency of observations at some 

stations, but also from changes in instrumentation and changes in the measurement 

locations (Scaff et al., 2015). Given these heterogeneities and the importance of 

precipitation as a high-impact climate variable, there is a need for more rigorous 

assessments of variations and trends in precipitation over regions such as Alaska.  

 

        The present study brings more rigorous analysis techniques to assess historical 

variations of precipitation. While most prior studies have utilized different forms of linear 

regression which may not be well suited to precipitation data, methods such as the 

Bayesian analysis technique utilized here have the potential to yield more detailed 

confidence information and estimation of change (Hobbs, 1997). Regardless of whether 

such analysis methods improve confidence in trends, these methods can provide useful 

insight to precipitation time series, especially to changes in the mean, seasonal cycle, 

and trend.   

 

Background and Motivation 
 

McAfee, Guentchev and Eischeid (2013; 2014) provided comprehensive 

summaries of previous studies that have attempted to detect changes in Alaska’s 

precipitation through the early 2010s. Past analyses based on both station and gridded 

data have used different types of linear regression (most often ordinary least squares 

regression) or occasionally spline fitting analysis. Linear regression has many 

advantages such as simplicity and reproducibility. However, it faces many challenges 

including strict assumptions that are often not met in Alaska and is highly sensitive to 

outliers and missing data (Wilks, 2011). Furthermore, linear regression can risk 

oversimplifying trends, missing important short-term variations, and giving little 
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information on uncertainty at any given time. Spline fitting can give a more wholistic 

picture but struggles to provide the clean, objective results for which linear regression is 

so often used. These shortcomings have led past studies of Alaska precipitation to often 

divergent conclusions about historical and ongoing trends (McAfee, Guentchev and 

Eischeid, 2013).  

 

In Alaska, sparse and discontinuous station data confound assessments of 

trends. To alleviate this problem, recent research has utilized climate regions that 

attempt to aggregate data together into a more complete dataset. The Alaska climate 

divisions were originally developed by Bieniek et al. (2012) and are now used 

operationally by the National Centers for Environmental Information (NCEI). The climate 

divisions for Alaska can be seen in Figure 1. NCEI obtains divisional climate data by 

area-weighted averaging of a gridded dataset based on continuous NCEI station 

records and a high-resolution climatology (Daly et al., 2012). These data are 

aggregated into the current 13 Alaska climate regions in the nCLIMDIV database (Vose 

et al., 2014). While the underlying gridded data likely suffer from many of the issues 

seen in other gridded datasets that rely on interpolation, the regional aggregation may 

help reduce the impacts of heterogeneities at individual locations. 

 

As an alternative to station-based products, reanalysis can provide an 

independent, continuous source of precipitation data. Additionally, many reanalysis 

products, especially ERA (European Center for Medium Range Weather Forecasting 

Re-Analysis), have proven useful in Alaska (Bieniek et al., 2016). Reanalysis, however, 

carries its own set of issues, including bias compared to observations, inability to 

resolve local effects, and uncertainties associated with model physics. These biases 

have been documented for Alaska by Lindsay et al. (2014) and Lader et al. (2016).  

Given the often-discordant results of observational studies, reanalysis still offers a 

useful independent source to consider, especially since the complete spatial coverage 

is achieved by physically based methods. 
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To illustrate how different datasets compare using traditional linear regression, 

trends from two reanalysis products were evaluated against the NCEI regional 

observational data.  The recent ERA5 reanalysis (Copernicus, 2017) and a downscaled 

version of ERA-Interim using the WRF (Weather Research and Forecasting) model 

(Bieniek et al., 2016) were chosen due to their skill in depicting precipitation (Lader et 

al., 2016). These reanalysis products were aggregated into the climate divisions using 

the same area averaging methodology as the NCEI data. From this data, total annual 

precipitation was graphed, and an ordinary least squares linear regression was then 

applied.  

 

The time series for selected regions (Figure 2) illustrates several notable 

features. First, both reanalysis products show a clear bias compared to the 

observationally-based dataset, although ERA5 is generally closer to observations than 

the downscaled ERA-I. Such reanalysis bias has been well documented in past 

research (Lader et al., 2016; Marshall et al., 2018). Second, linear regression results 

vary widely. While generally not statistically significant when using a Wald test, linear 

trend lines based on the various sources converge in some regions, diverge in others, 

and largely agree in some. Of the 3 datasets and 13 regions over the 1979-2018 time 

period, the trends show statistical significance at the 95% level in only two instances: 

the NCEI data for the South-Central and West Coast regions. These results contrast 

with recent local observations of extreme precipitation and predictions for the Arctic as a 

whole (Min, Zhang and Zwiers, 2008), whose model results suggest a widespread 

moistening of the Arctic over the second half of the 20th Century. In order to get a more 

complete picture, this same analysis can be extended back to 1925 for the NCEI data, 

although both reanalysis products currently only go back to 1979. The linear regression 

results for this longer time period are shown in Table 1. This method still only produces 

two statistically significant trends; interestingly in two different regions than previously 

noted. 

 

Past research has noted the strong influence of teleconnections such as the 

Pacific Decadal Oscillation (PDO) on Alaskan precipitation (Wendler, Gordon, and 
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Stuefer, 2017). Because a well-known PDO shift occurred in the mid-1970s, such an 

influence is likely to lead to a breakpoint in the center of the NCEI timeseries (Hartmann 

and Wendler, 2005). To account for the possibility of breakpoints in the data, a 

segmented linear analysis (Muggeo, 2016) was applied to the long-term NCEI data. If a 

breakpoint was found to be statistically significant at the 95% level, it was added to the 

regression line. An example of this analysis for the same regions in Figure 2 is 

presented in Figure 3, and the overall numerical results for all regions are summarized 

in Table 2. The inclusion of breakpoints greatly enhances the significance of trends in 

several regions, particularly coastal regions and in Southern Alaska. Most Interior 

regions do not exhibit confident breakpoints and show the same trends as in Table 1. 

 

Overall, these examples of linear regression are not meant to serve as a 

comprehensive comparison of reanalysis and observations nor as a detailed analysis of 

the merits of linear regression. Rather, these examples show how linear regression can 

often produce differing results on different datasets and time periods, confounding its 

utility for meaningful trend detection. Although subtle changes may exist, linear 

regression gives only a single answer over a large swath of time. Furthermore, these 

examples show how breakpoints may exist in the data that can be used to improve the 

informativeness of linear regression. The Bayesian approach used in the rest of this 

paper helps alleviate many of the issues of simple linear regression by adding an 

uncertainty analysis, allowing for the presence of breakpoints, and determining trends at 

instantaneous points in time. Thus, the Bayesian method described in the following 

section provides a more comprehensive analysis and avoids many of the pitfalls 

associated with linear regression. 

 

Methods 

 

Bayesian modeling leverages prior information to infer model structure. Using 

prior knowledge, one can set the general structure of a model, but exact model 

parameter values are left unknown (though they also may be constrained with prior 

knowledge). Parameter values are then inferred using new observations and Bayesian 
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inference to create probability distributions of likely parameter values. Rbeast is a 

Bayesian model developed to analyze time series and identify change points in those 

time series (Zhao et al., 2019). While originally developed for applications of remote 

sensing to vegetation, the model can be applied to any time series of data that meets its 

assumptions. The model assumes that an input time series can be decomposed into 

four separate components: a seasonal component modeled with a harmonic function, a 

background component modeled with a piecewise linear regression function, some 

number of possible change points for both the seasonal and background components, 

and some amount of random noise. In the present application, total monthly 

precipitation values were used for all Rbeast modeling to ensure that all these 

assumptions were met. Monthly precipitation throughout Alaska has clearly identifiable 

seasonal cycles, some climate-based background average, the possibility of having 

changepoints, and some amount of noise due to internal variability or the chaotic 

component of the climate system. Monthly precipitation totals were retrieved from the 

nCLIMDIV database for regional (i.e. climate divisional) information (Vose et al., 2014), 

the Copernicus datastore for ERA5 data (Copernicus, 2017), and the GSOM version 1 

dataset for station data (Lawrimore et al., 2016). 

  

A roadmap for the Rbeast model is shown in Figure 4. A distribution of possible 

parameters is created by the model as a prior distribution. Prior distributions reflect prior 

knowledge of the parameter values. In this case, the model initially assumes no general 

knowledge and hence creates flat distributions. Prior distributions are created for each 

of the model components as in Figure 4. These distributions can be influenced in a few 

key ways by the user. Most importantly, the harmonic component period was set at 12 

to reflect the actual seasonal cycle.  For this study, the maximum number of change-

points in the seasonal component was set to 6 and the maximum number of 

background change-points was set to 12. The minimum changepoint separation was set 

to 1 year to help minimize the influence of outlier events. The exact values of these 

parameters do not have a large effect on the results but can help improve model 

consistency and confidence. These distributions describe many different possible 

piecewise linear regression and harmonic components, alongside changepoint point 
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number and positions in those components, that could be used to describe a time 

series. After prior distributions are created, the actual observed (or reanalysis) 

precipitation data is ingested to create a single posterior Bayesian distribution. The 

posterior distribution essentially ‘weights’ the prior distributions based on their ability to 

accurately fit the time series. The prior distribution defines the space of parameters that 

could be used to describe a time series and the posterior distribution weights those 

functions according to their likelihood to actually describe a given time series. The 

resulting distribution is analytically intractable. In order to understand the results, this 

distribution is then sampled using a complex Monte Carlo procedure. For determining 

sample size, this study follows the guidelines of past sensitivity analysis (Zhao et al., 

2013). For individual examples, 4 sampling chains were used with 60,000 samples each 

using a burn-in period of 10,000 samples. Sample chains represent the number of 

sample runs completed, sample size is the length of each chain, and burn-in is a 

number of samples discarded at the start of a chain. Because the process is inherently 

stochastic, exact results can vary between model runs. The parameters chosen here 

minimize this variability and differences between runs generally do not affect the results 

presented in this paper. No further processing was done to Rbeast output; rather the 

model results are visualized “as is” to provide insights to the precipitation trends. 
 

Results 
 

Rbeast outputs a number of parameters that describe the Bayesian distribution. 

Figure 5 shows a detailed example of Rbeast output. For easy comparison to linear 

analysis, this example uses NCEI monthly precipitation totals for the Northwest Gulf 

region (Figure 1). The results show a clear decline in background precipitation from the 

1920s until the late 1970s. At that point, a period of rapid increase occurs, followed by 

several decades of unchanging background precipitation. The uncertainty around the 

period of rapid change is much greater than at other points in the record. The probability 

distribution indicates that changepoints are most likely placed in the late 1970s but that 

there may have been another period of change during the late 1950s. Changepoints are 

highlighted simply by taking the average number of changepoints in the posterior 
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distribution and then picking the highest probability points in the changepoint probability 

distribution up to that number of changepoints with at least 1 year separation. Specific 

changepoints are highlights to add context for analysis, but it may often be more useful 

to look at the shape of the changepoint probability distribution itself. The presence of 

one identified changepoint means that the sampled Bayesian models most often used 

one breakpoint, but some used more, and others used fewer. The seasonal component 

(bottom half of the figure) has no indicated changepoints. Overall, this series implies a 

period of rapidly changing background precipitation for the Northwest Gulf Coast during 

the late 1970’s followed by a period of no significant change in the background 

precipitation nor in the seasonal cycle.  

 

Piecewise linear analysis for Northwest Gulf region’s data for 1925-2018 showed 

an overall decreasing trend followed by an increasing trend with a breakpoint around 

the early 1950’s. The Bayesian Analysis finds a similar overall shape, but the 

decreasing trend continues until 1970 with a rapid increase over only about 5 years. 

Where linear analysis implies a gradual increase in precipitation, the Bayesian analysis 

indicates a much more rapid shift. The Bayesian analysis places its changepoints later 

than the linear breakpoint (the mid-1970s rather than the early 1950s) but the probability 

distribution implies a subtle change in the 1950s as well. The shift identified in the 

Bayesian analysis is likely related to the breakpoint placement in the linear analysis. 

The mid 1970s changepoint in the Bayesian analysis aligns well with past research 

which places a PDO associated climate shift around this time period (Hartmann and 

Wendler, 2005). The example illustrates how RBeast can add significant context to 

changepoint and trend detection. Compared to linear regression, its results cannot be 

simply aggregated into a table, as doing so would eliminate much of the context that 

Bayesian analysis adds.  

 

Beyond producing Rbeast output for each NCEI time series, Rbeast analysis was 

used to compare reanalysis and some station data records. These comparisons 

showcase many of the unique strengths of a Bayesian approach. Due to the length of 
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the reanalysis, these comparisons are constrained to the time period (1979-2018). 

Several notable examples are now presented.  

 

Figure 6 displays a comparison between the University Experimental Station and 

its corresponding ERA5 grid cell. The University Experimental Station is a long-term 

weather station record that has been consistently maintained near the University of 

Alaska Fairbanks campus. Excluding a short, wet period around 1989, the station data 

record shows a period of relatively little change from 1979 until 2012. It rapidly 

increases from about 2012 through 2015 before flattening out at this higher level. This 

increase is associated with a changepoint, however, because the credible interval 

before and after the changepoint overlap, the change is unlikely to be significant. The 

ERA5 results show an overall similar, but less pronounced change than the station data. 

The wet period in the early 1990s appears more prolonged in the reanalysis and the 

recent wetting does not appear as strongly. The changepoint distribution is similar, 

though exact placement is much less confident for the reanalysis data. The Fairbanks 

example shows a location where reanalysis and observations largely agree in terms of 

general trends. The muted shift in reanalysis likely stems from reanalysis data showing 

relatively lower extreme highs compared to observations. This likely illustrates the 

importance of convective and terrain-associated precipitation in the Fairbanks area 

which is often not well resolved in reanalysis models (de Leeuw, Methven and 

Blackburn, 2014). 

 

 

Figure 7 is a similar comparison for King Salmon in Southwest Alaska. The 

station data for King Salmon shows that precipitation has slightly but consistently 

increased linearly over the record. A changepoint is placed around 2010 indicating a 

recent increase in the precipitation trend. Though consistent, the confidence level of this 

change is not high. The reanalysis results differ substantially from the station-based 

results. The reanalysis exhibits little change until 2010 with gradually increasing 

precipitation appearing more recently. It has a changepoint placed around 2017 

associated with the recent precipitation increase, though the probability distribution 
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shows very low confidence in this change point. The reanalysis change in precipitation 

has even lower confidence than the station data. In contrast to the preceding 

comparison for Fairbanks, the two series here show relatively little agreement. Other 

comparisons in Southwest Alaska, such as Bethel, show similar results to King Salmon. 

The exact mechanisms for this disagreement are unclear, but similar to Fairbanks, 

much of the warm-season rainfall in this area is controlled via small-scale (unorganized) 

convection which is often not well captured by reanalysis. 

 

 

Figure 8 shows a comparison for Kuparuk, which is an NWS cooperative station 

on the Alaskan north coast, west of Prudhoe Bay. The station data show a slightly 

positive increase until around 2010 where the precipitation increase appears to 

accelerate. A changepoint is placed around 2012 alongside an acceleration of the 

precipitation increase. The reanalysis data exhibit a very similar trend to the station data 

but with a much wider confidence interval. A changepoint occurs in 2012 alongside the 

station data changepoint, though the probability distribution indicates that the reanalysis 

changepoint is less confident. Unique among the examples displayed here, the red line 

in the reanalysis series indicates a changepoint in the seasonal harmonic component. 

This suggests that the North Slope data may be exhibiting some change in seasonality 

most likely driven by increasingly wet summers in contrast to dry winters. Similar 

precipitation increases and agreement between reanalysis and station data is seen in 

other North Slope stations such as Utqiaġvik. 

 

Figures 9 and 10 show how Rbeast can provide insights to precipitation in 

Southeast Alaska. In the results for Juneau (Figure 9), the station data indicate a rapid, 

short term increase in precipitation between 1990 and 1995. This increase is associated 

with 3 changepoints, although the probability distribution indicates little confidence in 

their exact placement. The wide uncertainty interval during this period indicates little 

overall confidence in the background component and hence the trend. The background 

remains flat for most of the rest of the record with only a recent decrease. The 

reanalysis series differs greatly, exhibiting a nearly flat trend with only very recent 



12 
 

drying. The confidence interval is very wide, indicating little confidence in the recent 

change. Although one changepoint is placed, the relatively flat probability distribution 

indicates very little confidence. Similar disagreement, though with different timing, 

occurs in some other Southeast Alaska stations such as Ketchikan. These similar 

stations are all first order, automated stations. Figure 10 shows the results for different 

Southeast Alaska station in Auke Bay, just a few miles from Juneau. In contrast to the 

Juneau station, this data is collected by NWS cooperative observers, not an automated 

station. The station record here indicates essentially no change until 2010 where there 

is a subtle increase followed by a decrease after 2015. An uncertain changepoint is 

associated with the initial change in 2010. The reanalysis data is very similar, although 

no increase is observed in 2010. The magnitude of station-reanalysis disagreement for 

Auke Bay is much smaller than for Juneau. For both cases, the wide confidence interval 

suggests notable though not significant change. In contrast to Juneau, several other 

cooperative stations in Southeast Alaska, such as Little Port Walter and Petersburg, 

show similar agreement to Figure 10. Disagreements between station data and 

reanalysis, as illustrated by the 1990 spike in Juneau, present a clear issue, as such 

disagreement is present at several automated stations but wholly absent from nearby 

Co-Op stations. The NCEI regional data includes both Co-Op sites and first order 

automated stations, and hence may be influenced by these incongruent shifts. Rbeast 

analysis for the Central Panhandle region in Figure 11 exhibits an increase in 

uncertainty after 1990 around the time of the spike seen in Juneau. This time series 

also exhibits a further increase around 2000 that can be seen in some other areas of 

the Central Panhandle region but not in Juneau. The 1990 spike has been noted as an 

inhomogeneity by (McAfee, Guentchev and Eischeid, 2013). These results suggest that 

the 1990 spike may be caused by station changes rather than actual precipitation, 

though station metadata does not report any specific change around 1990 (Lawrimore 

et al., 2016). This example shows a situation where reanalysis may provide a more 

accurate picture than station data alone. It should be noted that all data sources in 

Southeast Alaska exhibit a recent decrease in precipitation, likely associated with 

widespread recent drought (Bathke et al., 2020). 
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 More broadly, reanalysis data allows for exploration on a larger geographic scale 

in order to assess broad-scale trends.  For this purpose, we use the spatially complete 

ERA5 data. The native ERA5 grid is used and Rbeast is run on each grid cell 

individually; no extra information is ingested form surrounding cells. Figure 12 shows 

estimated changes over various timeframes in background precipitation using RBeast 

based on ERA5. Relative to 1979, the 1990s (panel b) and 2000s (panel c) saw drier 

conditions in much of the interior and west coast while wetter conditions are apparent 

on the North Slope. In the 2010s (panel d), much of the Interior and Southwest Coast 

was wetter than preceding decades and the North slope saw further intensification of a 

wetter climate. Southeast Alaska, on the other hand, experienced drying. There is also 

a gradual wetting trend observed in the far western Aleutian Islands and much of the 

Chukchi Sea throughout the record. In contrast, the Bering Sea experienced more 

mixed trends, with recent wetting in the west but little change in the central and eastern 

Bering Sea. Over the Arctic Ocean, there is a decrease north of the Chukchi Sea, 

peaking in intensity in the early 2000s. Areas of high confidence change are generally 

limited to the 2010s and to the North Slope and west of the far Aleutian Islands. High 

confidence change only occurs in areas of increased precipitation; no area of 

precipitation decrease is highlighted with high confidence.  

 

Discussion   
 

In situ observations often provide a more detailed and confident record for a 

given location, but reanalysis enables investigation over large areas where observations 

are not present. Figure 12 illustrates how Bayesian analysis may be applied to a 

gridded dataset. The details afforded by Bayesian analysis allow for identification of 

trend intensity over time. Furthermore, the uncertainty statistics allow for areas of high 

certainty to be highlighted. While trends vary greatly, some definite conclusions can be 

made. Precipitation on much of the North Slope has significantly increased over the 

past 40 years. Additionally, precipitation has significantly increased over the western 

Bering Sea, although little observational data exists to verify the reanalysis there. No 
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area of decrease is marked as significant, so the broad trends point to a wetter climate. 

This finding aligns well with current climate projections (IPCC, 2013; Lader et al, 2017).  

 

While overall trends are positive, the trends have changed unevenly around 

Alaska in the last 40 years, and many areas, such as the Interior, have only recently 

seen increased precipitation. Furthermore, short term climate events such as the 

drought in Southeast Alaska (Bathke et al., 2020) can have large effects on the Rbeast 

results, so these trends that are not statistically significant are not necessarily related to 

climate change. That said, areas highlighted as significant change are more likely 

associated with climate change rather than interannual variability. The Kuparuk location 

shown in Figure 8 is within the area of statistical significance in Figure 12d.  In this case, 

the two data sources agree that precipitation has gradually increased over 40 years, 

though the increase in the reanalysis data is somewhat less confident. The narrow 

confidence interval in this example suggests that the significance of this change is due 

to both the large magnitude of the change and the narrower confidence interval 

generated from less variable precipitation.  

 

The results presented here highlight differences between Bayesian analysis and 

traditional linear regression. Perhaps the most obvious practical difference is that 

Bayesian analysis allows for direct decomposition of background and seasonal signals. 

Furthermore, Bayesian statistics allow for trends to be analyzed at specific points in 

time rather than as a single linear regression spread over a large period. This allows the 

Bayesian analysis to identify short-term or subtle trends that are missed by linear 

analysis. Alongside instantaneous trend identification, Bayesian statistics also allow for 

a varying confidence range, giving a more nuanced picture of uncertainty. Breakpoint 

analysis in linear regression yields a single deterministic location, while Bayesian 

analysis can identify many possible changepoints while providing probability 

distributions for their placement. Bayesian analysis also enables a more temporally 

detailed analysis while giving an explicit picture of component uncertainty. While 

interpretation may be less straightforward than linear analysis, the added context can 

provide significant nuance. The examples explored here showed often very wide 
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uncertainty ranges, likely stemming from the large inter-annual variability in 

precipitation. Less variable parameters like temperature show narrower confident 

ranges, allowing Bayesian analysis to detect subtle changes that linear analysis may 

miss. 

 

Conclusions 
 

 The examples given in this paper show how Bayesian analysis can be used to 

detect subtle changes in precipitation and better constrain the disagreement between 

different sources of precipitation data. For example, the application of Rbeast shows 

how Bayesian methods can be used to detect the start and end dates of trends and, 

more importantly, to assign confidence levels changes in trend components. The 

method can also identify changes in the seasonal cycle, although there was little 

evidence for such changes in the precipitation data examined here. 

 

        This analysis drew upon several data sources, including records from individual 

stations, precipitation data aggregated into climate divisions, and a state-of-the-art 

atmospheric reanalysis, ERA5. Reanalysis has the advantage of spatial and temporal 

completeness, and it arguably provides the best avenue to a robust assessment of 

trends over time.  Application of the Bayesian method to the different sources of data for 

a specific location can lead to the identification of spurious heterogeneities in the station 

data.  Examples presented here for Southeast Alaska showed that the change to the 

automated observing system in the early 1990s resulted in such a heterogeneity in the 

station data at some locations, demonstrating further the insights that can be provided 

by the Bayesian method. 

 

        When applied to ERA5 gridded precipitation data for Alaska and the surrounding 

seas, Rbeast shows how precipitation has changed spatially over time. Recent 

increases are found over northern Alaska, parts of the Interior, nearshore regions of the 

Beaufort and Chukchi Seas, and a large area of the western Bering Sea.  Except for the 

northern Alaska coastal region, these changes emerged only with the addition of the 
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most recent decade (2010-2019) to the ERA5 reanalysis. However, only northern 

Alaska’s increase of precipitation can be assigned high confidence. The emergent 

character of this increase over much of the Alaska domain is consistent with global 

climate model projections of increased precipitation in high latitudes due to 

anthropogenic forcing.  In this respect, the Bayesian method appears to be an ideal 

candidate for systematically monitoring a variable that has widespread impacts in 

Alaska, as noted in the Introduction. The results presented here show the potential of 

the Bayesian method to not only monitor but to diagnose the trends in climate variables. 

Applications to other variables such as temperature, wind speed, and even cryosphere 

variables such as sea ice and snow cover appear to have merit, especially since the 

seasonal cycle of these variables can be stronger than the seasonal cycle of the 

precipitation, which was the focus of this study. 
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(Note that this is the same as Figure 12 in the manuscript) 

The large variability in occurrence and measurement of precipitation in Alaska has 

complicated trend identification via traditional linear regression. This paper applies 

recently developed Bayesian analysis techniques to better understand how precipitation 

in the state has changed over time. When compared to linear regression, the analysis 

presented here gives a more detailed picture of trend uncertainty and aids in the 

identification of disagreement between data sources.  



NCEI Alaska Climate Regions

Figure 1: A map of the NCEI climate regions. Diamonds indicate stations that are analyzed later in this
paper. Regions from (Bieniek, 2012)






























